Multi-Fidelity Cost-Aware Bayesian Optimization

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuous-fidelity Bayesian Optimization

While Bayesian optimization (BO) has achieved great success in optimizing expensive-to-evaluate black-box functions, especially tuning hyperparameters of neural networks, methods such as random search (Li et al., 2016) and multifidelity BO (e.g. Klein et al. (2017)) that exploit cheap approximations, e.g. training on a smaller training data or with fewer iterations, can outperform standard BO a...

متن کامل

Continuous-fidelity Bayesian Optimization

While Bayesian optimization (BO) has achieved great success in optimizing expensive-to-evaluate black-box functions, especially tuning hyperparameters of neural networks, methods such as random search (Li et al., 2016) and multifidelity BO (e.g. Klein et al. (2017)) that exploit cheap approximations, e.g. training on a smaller training data or with fewer iterations, can outperform standard BO a...

متن کامل

Continuous-Fidelity Bayesian Optimization with Knowledge Gradient∗

While Bayesian optimization (BO) has achieved great success in optimizing expensive-to-evaluate black-box functions, especially tuning hyperparameters of neural networks, methods such as random search [13] and multi-fidelity BO (e.g. Klein et al. [10]) that exploit cheap approximations, e.g. training on a smaller training data or with fewer iterations, can outperform standard BO approaches that...

متن کامل

Multi-fidelity Bayesian Optimisation with Continuous Approximations

Bandit methods for black-box optimisation, such as Bayesian optimisation, are used in a variety of applications including hyper-parameter tuning and experiment design. Recently, multifidelity methods have garnered considerable attention since function evaluations have become increasingly expensive in such applications. Multifidelity methods use cheap approximations to the function of interest t...

متن کامل

Opportunity Cost in Bayesian Optimization

A major advantage of Bayesian optimization is that it generally requires fewer function evaluations than optimization methods that do not exploit the intrinsic uncertainty associated with the task. The ability to perform well with fewer evaluations of the target function makes the Bayesian approach to optimization particularly compelling when that target distribution is expensive to evaluate. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Social Science Research Network

سال: 2022

ISSN: ['1556-5068']

DOI: https://doi.org/10.2139/ssrn.4268166